Step of Proof: quot_elim
12,41
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
quot
elim
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
4.
a
:
T
5.
b
:
T
6.
E
(
a
,
b
)
a
=
b
latex
by ((EqTypeCD)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
quotient
wf
origin